Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.

نویسندگان

  • Theo P Hill
  • Daniela Später
  • Makoto M Taketo
  • Walter Birchmeier
  • Christine Hartmann
چکیده

Osteoblasts and chondrocytes are involved in building up the vertebrate skeleton and are thought to differentiate from a common mesenchymal precursor, the osteo-chondroprogenitor. Although numerous transcription factors involved in chondrocyte and osteoblast differentiation have been identified, little is known about the signals controlling lineage decisions of the two cell types. Here, we show by conditionally deleting beta-catenin in limb and head mesenchyme that beta-catenin is required for osteoblast lineage differentiation. Osteoblast precursors lacking beta-catenin are blocked in differentiation and develop into chondrocytes instead. In vitro experiments demonstrate that this is a cell-autonomous function of beta-catenin in an osteoblast precursor. Furthermore, detailed in vivo and in vitro loss- and gain-of-function analyses reveal that beta-catenin activity is necessary and sufficient to repress the differentiation of mesenchymal cells into Runx2- and Sox9-positive skeletal precursors. Thus, canonical Wnt/beta-catenin signaling is essential for skeletal lineage differentiation, preventing transdifferentiation of osteoblastic cells into chondrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Skeletal development--Wnts are in control.

Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are f...

متن کامل

Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation.

Inactivation of Lrp5, a gene encoding a likely Wnt co-receptor, results in low bone mass (osteopenia) by decreasing bone formation, suggesting that Wnt signaling in osteoblasts regulates bone formation. Here we show that Tcf1 and Tcf4 are expressed in osteoblasts during development and after birth; stabilization of beta-catenin, an essential component of canonical Wnt signaling, in differentiat...

متن کامل

Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors.

Hedgehog and canonical Wnt/beta-catenin signaling are implicated in development of the osteoblast, the bone matrix-secreting cell of the vertebrate skeleton. We have used genetic approaches to dissect the roles of these pathways in specification of the osteoblast lineage. Previous studies indicate that Ihh signaling in the long bones is essential for initial specification of an osteoblast proge...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2005